
Webmapper: A Tool for Visualizing and
Manipulating Mappings in Digital Musical

Instruments

Johnty Wang1, Joseph Malloch2, Stephen Sinclair3, Jonathan Wilansky, Aaron
Krajeski1, and Marcelo M. Wanderley1

1 Input Devices and Music Interaction Laboratory, CIRMMT, McGill University
{johnty.wang, aaron.krajeski}@mail.mcgill.ca,

jonathan.wilansky@gmail.com, marcelo.wanderley@mcgill.ca
2 Graphics and Experiential Media Lab, Dalhousie University

joseph.malloch@dal.ca
3 Multimodal Simulation Lab, Universidad Rey Juan Carlos

stephen.sinclair@urjc.es

Abstract. This paper describes the motivation, implementation, and
usage of the application Webmapper, a tool for visualizing and manip-
ulating mappings in the context of digital musical instrument (DMI)
design. Webmapper is a user interface for interacting with devices on the
libmapper network, a distributed system for making dynamic connec-
tions between signals within discrete devices that constitute a DMI. This
decoupling of the mapping as a separate entity allows flexible representa-
tion and manipulation by any tool residing on the network—exemplified
by Webmapper. We demonstrate the capability and potential utility of
providing different representations of mappings in the work-flow of DMI
design under a variety of collaborative and individual use cases, and
present four visualizations applied to mappings used from a previous
project as a concrete example.

Keywords: mapping, DMI design, prototyping, collaboration, visual-
ization

1 Introduction

Mapping, in the context of digital musical instruments (DMIs)[1], pertains to
the translation of input signals into resultant sound. Since mapping determines
the ultimate behaviour of the instrument, it is an important part of the design
process and an interesting area of research [2].

This paper describes the motivation, implementation, and usage of the ap-
plication, Webmapper, a tool that supports multiple approaches to visualizing
and manipulating mappings in the context of DMI design. First, the contexts
which inspired Webmapper are introduced including a brief introduction to the
libmapper framework that provides the underlying connectivity features. Then,
the structure and implementation of Webmapper is presented using examples of



2 Wang et al.

mappings from projects demonstrating the various visual representations imple-
mented. Finally, an evaluation of the different views are presented, along with a
discussion and future work related to the application.

2 Background and Related Work

2.1 Mapping Tools for DMI Design

A number of general-purpose graphical tools, designed for building interactive
and multimedia systems, are used by the community to create mappings in
the context of DMI design. Some—such as Max4, Pd5, and TouchDesigner6—
provide full programming environments that can be used to define the structure
of the entire instrument. These tools not only allow visual representation of the
connection and processing of signals that make up part of the mapping process,
but also can embed the interfaces to hardware and software components related
to the sensor input devices as well as output synthesis systems. In terms of
representation, these visual environments provide a signal-flow or “patching”
interface that resembles the physical connection of wires in an audio processing
chain.

There are also toolboxes and applications dedicated to the process of de-
signing mappings specifically for DMIs. Some examples such as OSCulator7 and
junXion8, are standalone applications that provide drivers for hardware input
devices and allow transmission of signal data to programmed endpoints with
data scaling. Other toolboxes provide specific mapping features to an existing
environment such as a library of mapping and signal conditioning primitives [3],
matrix-based manipulations specifically for mapping [4], mapping between differ-
ent dimension spaces via geometric representations [5], or creation of mappings
via machine learning [6].

One key commonality among all these existing tools is that they provide a sin-
gle method of representing the mapping. Webmapper, on the other hand, allows
more than a single way of representing and manipulating the mapping structure.
The Jack Audio Connection Kit 9 provides an API that allows applications to
access and modify the audio and MIDI connections between virtual endpoints
on a local system, which results in the possibility of multiple command-line and
GUI tools. However, Jack was designed to work with connections only.

2.2 libmapper

Through working on a number of collaborative projects involving DMIs span-
ning more than 10 years, a software framework for creating dynamic mappings,

4 https://cycling74.com/products/max/
5 https://puredata.info/
6 https://www.derivative.ca/
7 https://osculator.net/
8 http://steim.org/product/junxion/
9 http://jackaudio.org/



Webmapper: Visualizing Mappings in DMIs 3

libmapper [7], was developed. Some concepts that prompted the development of
libmapper include:

{ Experimentation: The design of DMIs involves many variables such as the
selection of sensing components, mapping, and synthesis techniques. These
are not standard procedures and the process often involves exploration and
experimentation.

{ Diversity: Since work with DMIs often involves collaborators from different
backgrounds, there isn’t a single tool or approach that will work for everyone.
Fixed representation standards may be limiting.

{ Distributed control: Under collaborative contexts, it may be useful to
allow multiple users to view and modify the mapping configuration at the
same time.

To facilitate experimentation, it is necessary to provide the ability for connec-
tions between components to be quickly created and modified. The diversity of
users suggest it may be useful to provide more than a single view and interaction
method on the state of the system. Concurrency implies the need for a network
based model where more than a single user can access and manipulate data at
the same time. As a result, libmapper was developed as a framework upon which
more modular and flexible approaches to mapping design can be realized. At its
core, libmapper as a software library provides the means to expose a device to
a network that allows automated discovery and dynamic connection with signal
conditioning built into the connection itself.

The fundamental components on the libmapper network are devices and sig-
nals. An input device may contain a number of output signals which may for
example be values corresponding to sensors intended to measure a set of ges-
tures, and an output device such as a synthesizer will feature input signals that
correspond to control parameters that affect the generated audio. libmapper al-
lows links to be made between devices which construct high level associations
between devices, and maps which are dataflow connections between parameters
of interest. Another key feature of libmapper is that some basic signal condition-
ing can be built into the connection itself so that commonly used methods such
as scaling, clamping, and basic filtering can be added.

Bindings for libmapper exist for many popular programming languages and
include C/C++, Java, Python, and Node.js. External objects for Max and Pure
Data are also available.

3 Webmapper

Two other GUI applications, Maxmapper and Vizmapper existed prior to the
development of Webmapper. The former was an interface implemented in the
Max environment that provides display and manipulation of connections on the
network based on a list representation, and served as the seminal example of a
usable graphical tool to view and manipulate devices on the network. The lat-
ter was an exploration of alternative representations of larger and more complex



4 Wang et al.

networks [8], and its existence also demonstrated that a different visual represen-
tation of the mapping can be running concurrently due to the distributed nature
of the network. A basic command-line application was also made to manipulate
and view mappings on the libmapper network10.

Webmapper, as its name implies, is a browser-based application. Originally,
the motivation to build a web-based application was to provide the ability to
run the user interface within a browser on a variety of desktop and mobile plat-
forms. Additionally, the frameworks and libraries for modern web development
platforms support scalable development and deployment of visual user interfaces.

A highlight of Webmapper is that it provides more than a single view on the
mapping structure, which allows multiple, as well as concurrent visual represen-
tations.

3.1 Architecture and Implementation

Webmapper is implemented using a Python back-end that serves two main func-
tions. First, the server provides interfaces to the libmapper network and allows
querying and modification of the state of running devices. Second, the server
hosts the front-end HTML/JavaScript content and synchronizes the state of the
network with the user interface. An overall architecture of Webmapper is shown
in Figure 1.

Fig. 1. Webmapper Architecture

10 https://sourceforge.net/projects/umapper/



Webmapper: Visualizing Mappings in DMIs 5

3.2 Views

The multiple views implemented in Webmapper were based on prior tools that
had already been developed, as well as graphical design considerations pertain-
ing to the correlation of properties of the network to various visual dimensions
[9]. Each view provides a different method of visualizing and modifying the con-
nections between devices and signals. Creation and modification of mappings are
implemented via graphical input methods such as drag and drop between the vi-
sual elements, click to select, and keyboard shortcuts for removing connections.
The full list of possible interactions for each view is described in [[9], chapter 4].

The following is a description of each view, followed by a visual demonstra-
tion example. The examples were created using saved mapping configuration files
from a previous project, Les Gestes: une nouvelle génération des instruments de
musique numérique pour le contrôle de la synthèse et le traitement de la musique
en performance par les musiciens et les danseurs11, a collaborative research
project directed by Sean Ferguson and Marcelo Wanderley at McGill University
and choreographer Isabelle van Grimde from the Montreal-based dance company
Van Grimde Corps Secrets12. This project involving multiple wearable interfaces
and a modular software synthesis system. At the time when these mappings were
created, Webmapper had not yet been implemented so the only view available
was the list based representation provided by Maxmapper. In this sample map-
ping there are two input devices connected to three output modules. The two
input devices are identical wearable DMIs worn by dancers, and they control dif-
ferent parameters of three output devices simultaneously. One receiving device,
a spatializer controller, is controlled by both input devices while two synthesizers
are driven by each input device independently. Each view implemented allows a
different way of visualising the connections in the network.

Fig. 2. List View device connections

11 Gestures: a new generation of digital musical instruments for controlling synthesis
and processing of live music by musicians and dancers

12 www.vangrimdecorpssecrets.com/



6 Wang et al.

List View The List View, one of the most direct ways of visually representing
connections, simply provides a bipartite graph showing source devices on the left
and destination devices on the right. Lines with arrowheads connect between
source and destinations. Once a link is made through dragging and dropping
between a source and destination device, a new tab window is created for the
source device that allows signal to signal mappings to be made. Figure 2 shows
the two input devices connected to 3 output devices. Here we can see that input
device 1 is connected to output devices 1 and 3, while input device 2 is connected
to output devices 2 and 3.

Selecting the tab window of input devices, we see how the individual signals
are connected to the synthesizer inputs, as shown in Figure 3 left and right for
the two devices.

The main advantage of the list view is that it lists all the connections between
devices and signals at once. However, when there are a lot of connections, the
visualization can become cluttered very quickly.

Fig. 3. List View signal connections for input device 1 and 2

Grid View In this view, inspired by the EagenMatrix13 application, the net-
work is represented by two grids. The left grid lists source devices on the hori-
zontal axis and destination devices are on the vertical axis. Intersection points, if
filled in blue, show the existence of links between devices. Devices must be added
to the right grid to show their signals and connections; vertical/horizontal lines
indicate the device has been added, and the right grid provides a similar repre-
sentation for signals and connections. In Figure 4, only the first input and first
output devices have been added. In figure 5, all devices have been added. The
grid view is equipped with the ability to save view configurations into presets,
allowing you to switch quickly between them.

One advantage of the Grid view is that, unlike the List View, a large number
of connections will still be legible since there are no overlapping lines used to
represent each link.

13 http://www.hakenaudio.com/Continuum/eaganmatrixoverv.html




